Hox11 genes establish synovial joint organization and phylogenetic characteristics in developing mouse zeugopod skeletal elements.

نویسندگان

  • Eiki Koyama
  • Tadashi Yasuda
  • Nancy Minugh-Purvis
  • Takashi Kinumatsu
  • Alisha R Yallowitz
  • Deneen M Wellik
  • Maurizio Pacifici
چکیده

Hox11 genes are essential for zeugopod skeletal element development but their roles in synovial joint formation remain largely unknown. Here, we show that the elbow and knee joints of mouse embryos lacking all Hox11 paralogous genes are specifically remodeled and reorganized. The proximal ends of developing mutant ulna and radius elements became morphologically similar and formed an anatomically distinct elbow joint. The mutant ulna lacked the olecranon that normally attaches to the triceps brachii muscle tendon and connects the humerus to the ulna. In its place, an ulnar patella-like element developed that expressed lubricin on its ventral side facing the joint and was connected to the triceps muscle tendon. In mutant knees, both tibia and fibula fully articulated with an enlarged femoral epiphyseal end that accommodated both elements, and the neo-tripartite knee joint was enclosed in a single synovial cavity and displayed an additional anterior ligament. The mutant joints also exhibited a different organization of the superficial zone of articular cartilage that normally exerts an anti-friction function. In conclusion, Hox11 genes co-regulate and coordinate the development of zeugopod skeletal elements and adjacent elbow and knee joints, and dictate joint identity, morphogenesis and anatomical and functional organization. Notably, the ulnar patella and tripartite knee joints in the mouse mutants actually characterize several lower vertebrates, including certain reptiles and amphibians. The re-emergence of such anatomical structures suggests that their genetic blueprint is still present in the mouse genome but is normally modified to the needs of the mammalian joint-formation program by distinct Hox11 function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hox11 paralogous genes are required for formation of wrist and ankle joints and articular surface organization.

Limb skeletal elements are connected by distinct synovial joints, but the mechanisms regulating joint formation, diversity, and organization remain unclear. Previous studies showed that Hox11 mouse mutants have severe developmental defects in radius and ulna and tibia and fibula, but wrist and ankle joint formation and characteristics were not examined in detail. We now find that E11.5 and E12....

متن کامل

Hox11 genes are required for regional patterning and integration of muscle, tendon and bone.

Development of the musculoskeletal system requires precise integration of muscles, tendons and bones. The molecular mechanisms involved in the differentiation of each of these tissues have been the focus of significant research; however, much less is known about how these tissues are integrated into a functional unit appropriate for each body position and role. Previous reports have demonstrate...

متن کامل

Hox11 genes regulate postnatal longitudinal bone growth and growth plate proliferation

Hox genes are critical regulators of skeletal development and Hox9-13 paralogs, specifically, are necessary for appendicular development along the proximal to distal axis. Loss of function of both Hoxa11 and Hoxd11 results in severe malformation of the forelimb zeugopod. In the radius and ulna of these mutants, chondrocyte development is perturbed, growth plates are not established, and skeleta...

متن کامل

Bio012500 1538..1548

Hox genes are critical regulators of skeletal development and Hox9-13 paralogs, specifically, are necessary for appendicular development along the proximal to distal axis. Loss of function of both Hoxa11 and Hoxd11 results in severe malformation of the forelimb zeugopod. In the radius and ulna of these mutants, chondrocyte development is perturbed, growth plates are not established, and skeleta...

متن کامل

Musculoskeletal integration at the wrist underlies the modular development of limb tendons.

The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 137 22  شماره 

صفحات  -

تاریخ انتشار 2010